Calcined Solution-Based PVP Influence on ZnO Semiconductor Nanoparticle Properties

نویسندگان

  • Halimah Mohamed Kamari
  • Naif Mohammed Al-Hada
  • Elias Saion
  • Abdul Halim Shaari
  • Zainal Abidin Talib
  • Moayad Husein Flaifel
  • Abdullah Ahmed
  • Ali Ahmed
چکیده

A water-based solution of polyvinylpyrrolidone (PVP) at various concentrations and zinc nitrates were used in conjunction with calcination to produce zinc oxide semiconductor nanoparticles. The extent to which the zinc oxide semiconductor nanoparticles had become crystallized was measured using X-ray diffraction (XRD), whilst morphological characteristics were determined using scanning electron microscopy (SEM). Transmission electron microscopy (TEM) supported by XRD results were used to evaluate the average particle size. Fourier transform infrared spectroscopy (FT-IR) was then carried out in order to identify the composition phase, since this suggested that the samples contained metal oxide bands and that all organic compounds had been effectively removed after calcination. A UV-VIS spectrophotometer was used to determine the energy band gap and illustrate optical features. Additionally, photoluminescence (PL) spectra revealed that the intensity of photoluminescence decreased with a decrease in particle size. The obtained results have mainly been inclusive for uses by several semiconductor applications in different fields, such as environmental applications and studies, since an absorption process for energy wavelengths could efficiently occur.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Properties of ZnO Nanoparticles Capped with Polymers

Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were ...

متن کامل

Stable and Fast-Response Capacitive Humidity Sensors Based on a ZnO Nanopowder/PVP-RGO Multilayer

In this paper, capacitive-type humidity sensors were prepared by sequentially drop-coating the aqueous suspensions of zinc oxide (ZnO) nanopowders and polyvinyl pyrrolidone-reduced graphene oxide (PVP-RGO) nanocomposites onto interdigitated electrodes. Significant improvements in both sensitivity and linearity were achieved for the ZnO/PVP-RGO sensors compared with the PVP-RGO/ZnO, PVP-RGO, and...

متن کامل

Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles

We propose a method for the synthesis of a colloidal ZnO solution with poly(N-vinylpyrrolidone) (PVP) as stabilizer. Stable colloidal solutions with good luminescence properties are obtained by using PVP as stabilizer in the synthesis of ZnO nanoparticles by a sol-gel method assisted by ultrasound. Nanoparticles with sizes of 30-40 nm in a PVP matrix are produced as a solid product. The colloid...

متن کامل

Factors Affecting the Power Conversion Efficiency in ZnO DSSCs: Nanowire vs. Nanoparticles

A comparative assessment of nanowire versus nanoparticle-based ZnO dye-sensitized solar cells (DSSCs) is conducted to investigate the main parameters that affect device performance. Towards this aim, the influence of film morphology, dye adsorption, electron recombination and sensitizer pH on the power conversion efficiency (PCE) of the DSSCs is examined. Nanoparticle-based DSSCs with PCEs of u...

متن کامل

ZnO: PVP Quantum Dot Ethanol Sensor

We prepare of ZnO quantum dots embedded in polyvinylpyrrolidone (PVP) matrix and report it’s working as ethanol sensor. The samples have been prepared via quenching technique where bulk ZnO powder is calcined at very high temperature of 1200 ̊C and then quenched into ice cold polyvinylpyrrolidone solution. Thee acteiut the samples specimen have been characterized by using UV/VIS spectroscopy, X-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017